Python使用OpenCV和K-Means聚类对毕业照进行图像分割

图像分割是将图像分割成多个不同区域(或片段)的过程。目标是将图像的表示变成更容易和更有意义的图像。

在这篇博客中,我们将看到一种图像分割方法,即K-Means Clustering

K-Means 聚类是一种无监督机器学习算法,旨在将N 个观测值划分为K 个聚类,其中每个观测值都属于具有最近均值的聚类。集群是指由于某些相似性而聚合在一起的数据点的集合。对于图像分割,这里的簇是不同的图像颜色。

我们使用的环境是pip install opencv-python numpy matplotlib

选择的图片是我们学校毕业照的图片,放心这里没有我,在学校公众号找的美图。

Python使用OpenCV和K-Means聚类对毕业照进行图像分割

导入所需模块:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# read the image
image = cv2.imread("Graduation.jpg")

在进行图像分割之前,让我们将图像转换为RGB格式:

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

我们将使用cv2.kmeans()函数,它将一个2D数组作为输入,并且由于我们的原始图像是3D(宽度、高度和深度为3 个 RGB值),我们需要将高度和宽度展平为单个像素向量(3 个 RGB值):

# 将图像重塑为像素和3个颜色值(RGB)的2D数组
print(image.shape) #(853, 1280, 3)
pixel_values = image.reshape((-1, 3))
# 转换为numpy的float32
pixel_values = np.float32(pixel_values)
print(pixel_values.shape) #(1091840, 3)

关于opencv下的kmean算法,函数为cv2.kmeans()
函数的格式为:kmeans(data, K, bestLabels, criteria, attempts, flags)

data: 分类数据,最好是np.float32的数据,每个特征放一列。之所以是np.float32原因是这种数据类型运算速度快,如果是uint型数据将会很慢。

K: 分类数,opencv2的kmeans分类是需要已知分类数的。

bestLabels:预设的分类标签:没有的话 None

criteria:迭代停止的模式选择,这是一个含有三个元素的元组型数。格式为(type,max_iter,epsilon)max_iter迭代次数,epsilon结果的精确性

其中,type又有三种选择:

  • cv2.TERM_CRITERIA_EPS :精确度(误差)满足epsilon停止。
  • cv2.TERM_CRITERIA_MAX_ITER:迭代次数超过max_iter停止
  • cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,两者合体,任意一个满足结束。
  • - attempts:重复试验kmeans算法次数,将会返回最好的一次结果

flags:初始类中心选择,两种方法

cv2.KMEANS_PP_CENTERS 算法kmeans++的center; cv2.KMEANS_RANDOM_CENTERS随机初始化

在这里,我们需要设置criteria确定停止标准。我们将在超过某些迭代次数(例如500)时停止,或者如果集群移动小于某个 epsilon 值(让我们在这里选择0.1),下面的代码在OpenCV 中定义了这个停止标准:

# 确定停止标准
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 500, 0.1)

上面图像,会发现五种主要颜色(分别是天空、草地、树、人的上身白,人的下身黑)

因此,我们将为这张图片使用K=5:

k = 5
_, labels, (centers) = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)

cv2.KMEANS_RANDOM_CENTERS只是指示OpenCV最初随机分配集群的值。

我们将扁平化的图像像素值转换为浮点数32类型,是因为cv2.kmeans() 浮点数32类型,然后,让我们将浮点数转换回8 位像素值np.uint8(centers)

# 转换回np.uint8
centers = np.uint8(centers)

# 展平标签阵列
labels = labels.flatten()

segmented_image = centers[labels.flatten()]

转换回原始图像形状并显示:

#重塑回原始图像尺寸
segmented_image = segmented_image.reshape(image.shape)
plt.imshow(segmented_image)
plt.show()

Python使用OpenCV和K-Means聚类对毕业照进行图像分割

当然,我们还可以禁用图像中的一些K-Means 聚类集群。例如,让我们禁用集群编号1并显示图像:

# 禁用2号群集(将像素变为黑色)
masked_image = np.copy(segmented_image)
# 转换为像素值向量的形状
masked_image = masked_image.reshape((-1, 3))
cluster1 = 1
masked_image[labels == cluster1] = [0, 0, 0]
# 转换回原始形状
masked_image = masked_image.reshape(image.shape)
plt.imshow(masked_image)
plt.show()

在这里插入图片描述

原来K-Means 聚类2 号集群 是树。

请注意,还有其他分割技术,例如霍夫变换、轮廓检测和当前最先进的语义分割。

到此这篇关于Python使用OpenCV和K-Means聚类对毕业照进行图像分割的文章就介绍到这了,更多相关OpenCV和K-Means图像分割内容请搜索179885.Com以前的文章或继续浏览下面的相关文章希望大家以后多多支持179885.Com!

猜你在找的Python使用OpenCV和K-Means聚类对毕业照进行图像分割相关文章

本文将结合实例代码,在Jupyter Notebook上使用Python+opencv实现如下简单车牌字符切割。感兴趣的程序猿可以参考一下
本文将结合实例代码,在Jupyter Notebook上使用Python+opencv实现如下图像缺陷检测。需要的朋友们下面随着小编来一起学习学习吧
端午节快要到了,旅游?回家?拜访亲友?少不了要带上粽子.那么:选择什么牌子的粽子呢?选择什么口味的粽子呢?选择什么价格区间呢?今天爬取了京东上面的 “粽子数据” 进行分
图片有的时候需要矫正,本文主要介绍了python中opencv实现图片文本倾斜校正,具有一定的参考价值,感兴趣的程序猿们可以参考一下
今天给大家带来的是关于Python的相关知识,文章围绕着如何用Python将GIF动图分解成多张静态图片展开,文中有非常详细的介绍,需求的大佬可以参考下
下面是采用以帧数为间隔的方法进行视频抽帧,为了避免不符合项目要求的数据增强,博主要求技术人员在录制视频时最大程度地让摄像头进行移动、旋转以及远近调节等,对py
今天给大家带来的是关于Python的相关知识,文章围绕着用Python创建简易网站展开,文中有非常详细的介绍及图文示例,需求的大佬可以参考下
如果好友短时间发送多条消息然后撤回会难以判断究竟撤回的是哪条信息,只能靠猜.后来我觉得“猜”这个事情特别不Pythonic,研究一段时间后找到了解决方案,不得不惊
不知道各位程序猿有没有遇到过这样的一个故事,发现自己直接喷不过,打字速度不够给力.下面这篇文章就能解决自己喷不过的苦恼,话不多说,上才艺,需求的大佬可以参考
本文主要内容是python下opencv库的安装过程,涉及我在安装时遇到的问题,并且,将从网上搜集并试用的一些解决方案进行了简单的汇总,感兴趣的程序猿们可以参考一下
今天给大家带来的文章是关于Python的相关知识,文章围绕着Python插入排序及其优化方案展开,文中有非常详细的介绍及代码示例,需求的大佬可以参考下
在实际应用中我们只需要将图像矩阵与Sobel滤波器卷积就可以得到图像的梯度矩阵了。具有一定的参考价值,感兴趣的程序猿们可以参考一下