Python道路车道线检测的实现

车道线检测是自动驾驶汽车以及一般计算机视觉的关键组件。这个概念用于描述自动驾驶汽车的路径并避免进入另一条车道的风险。

在本文中,我们将构建一个机器学习项目来实时检测车道线。我们将使用 OpenCV 库使用计算机视觉的概念来做到这一点。为了检测车道,我们必须检测车道两侧的白色标记。

在这里插入图片描述

使用 Python 和 OpenCV 进行道路车道线检测
使用 Python 中的计算机视觉技术,我们将识别自动驾驶汽车必须行驶的道路车道线。这将是自动驾驶汽车的关键部分,因为自动驾驶汽车不应该越过它的车道,也不应该进入对面车道以避免事故。

帧掩码和霍夫线变换
要检测车道中的白色标记,首先,我们需要屏蔽帧的其余部分。我们使用帧屏蔽来做到这一点。该帧只不过是图像像素值的 NumPy 数组。为了掩盖帧中不必要的像素,我们只需将 NumPy 数组中的这些像素值更新为 0。

制作后我们需要检测车道线。用于检测此类数学形状的技术称为霍夫变换。霍夫变换可以检测矩形、圆形、三角形和直线等形状。

代码下载
源码请下载:车道线检测项目代码

按照以下步骤在 Python 中进行车道线检测:

1.导入包

import matplotlib.pyplot as plt

import numpy as np
import cv2
import os
import matplotlib.image as mpimg
from moviepy.editor import VideoFileClip
import math

2. 应用帧屏蔽并找到感兴趣的区域:

def interested_region(img, vertices):
    if len(img.shape) > 2: 
        mask_color_ignore = (255,) * img.shape[2]
    else:
        mask_color_ignore = 255
        
    cv2.fillPoly(np.zeros_like(img), vertices, mask_color_ignore)
    return cv2.bitwise_and(img, np.zeros_like(img))

3.霍夫变换空间中像素到线的转换:

def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
    lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
    line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
    lines_drawn(line_img,lines)
    return line_img

4. 霍夫变换后在每一帧中创建两条线:

def lines_drawn(img, lines, color=[255, 0, 0], thickness=6):
    global cache
    global first_frame
    slope_l, slope_r = [],[]
    lane_l,lane_r = [],[]

    α =0.2 
  for line in lines:
        for x1,y1,x2,y2 in line:
            slope = (y2-y1)/(x2-x1)
            if slope > 0.4:
                slope_r.append(slope)
                lane_r.append(line)
            elif slope < -0.4:
                slope_l.append(slope)
                lane_l.append(line)
        img.shape[0] = min(y1,y2,img.shape[0])
    if((len(lane_l) == 0) or (len(lane_r) == 0)):
        print ('no lane detected')
        return 1
    slope_mean_l = np.mean(slope_l,axis =0)
    slope_mean_r = np.mean(slope_r,axis =0)
    mean_l = np.mean(np.array(lane_l),axis=0)
    mean_r = np.mean(np.array(lane_r),axis=0)
    
    if ((slope_mean_r == 0) or (slope_mean_l == 0 )):
        print('dividing by zero')
        return 1
    
    x1_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l) 
    x2_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l)   
    x1_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)
    x2_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)
    
   
    if x1_l > x1_r:
        x1_l = int((x1_l+x1_r)/2)
        x1_r = x1_l
        y1_l = int((slope_mean_l * x1_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))
        y1_r = int((slope_mean_r * x1_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))
        y2_l = int((slope_mean_l * x2_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))
        y2_r = int((slope_mean_r * x2_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))
    else:
        y1_l = img.shape[0]
        y2_l = img.shape[0]
        y1_r = img.shape[0]
        y2_r = img.shape[0]
      
    present_frame = np.array([x1_l,y1_l,x2_l,y2_l,x1_r,y1_r,x2_r,y2_r],dtype ="float32")
    
    if first_frame == 1:
        next_frame = present_frame        
        first_frame = 0        
    else :
        prev_frame = cache
        next_frame = (1-α)*prev_frame+α*present_frame
             
    cv2.line(img, (int(next_frame[0]), int(next_frame[1])), (int(next_frame[2]),int(next_frame[3])), color, thickness)
    cv2.line(img, (int(next_frame[4]), int(next_frame[5])), (int(next_frame[6]),int(next_frame[7])), color, thickness)
    
    cache = next_frame

5.处理每一帧视频以检测车道:

def weighted_img(img, initial_img, α=0.8, β=1., λ=0.):
    return cv2.addWeighted(initial_img, α, img, β, λ)


def process_image(image):

    global first_frame

    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    img_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)


    lower_yellow = np.array([20, 100, 100], dtype = "uint8")
    upper_yellow = np.array([30, 255, 255], dtype="uint8")

    mask_yellow = cv2.inRange(img_hsv, lower_yellow, upper_yellow)
    mask_white = cv2.inRange(gray_image, 200, 255)
    mask_yw = cv2.bitwise_or(mask_white, mask_yellow)
    mask_yw_image = cv2.bitwise_and(gray_image, mask_yw)

    gauss_gray= cv2.GaussianBlur(mask_yw_image, (5, 5), 0)

    canny_edges=cv2.Canny(gauss_gray, 50, 150)

    imshape = image.shape
    lower_left = [imshape[1]/9,imshape[0]]
    lower_right = [imshape[1]-imshape[1]/9,imshape[0]]
    top_left = [imshape[1]/2-imshape[1]/8,imshape[0]/2+imshape[0]/10]
    top_right = [imshape[1]/2+imshape[1]/8,imshape[0]/2+imshape[0]/10]
    vertices = [np.array([lower_left,top_left,top_right,lower_right],dtype=np.int32)]
    roi_image = interested_region(canny_edges, vertices)

    theta = np.pi/180

    line_image = hough_lines(roi_image, 4, theta, 30, 100, 180)
    result = weighted_img(line_image, image, α=0.8, β=1., λ=0.)
    return result

6. 将输入视频剪辑成帧并得到结果输出视频文件:

first_frame = 1
white_output = '__path_to_output_file__'
clip1 = VideoFileClip("__path_to_input_file__")
white_clip = clip1.fl_image(process_image)
white_clip.write_videofile(white_output, audio=False)

车道线检测项目 GUI 代码:

在这里插入图片描述

import tkinter as tk
from tkinter import *
import cv2
from PIL import Image, ImageTk
import os
import numpy as np


global last_frame1                                   
last_frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
global last_frame2                                      
last_frame2 = np.zeros((480, 640, 3), dtype=np.uint8)
global cap1
global cap2
cap1 = cv2.VideoCapture("path_to_input_test_video")
cap2 = cv2.VideoCapture("path_to_resultant_lane_detected_video")

def show_vid():                                       
    if not cap1.isOpened():                             
        print("cant open the camera1")
    flag1, frame1 = cap1.read()
    frame1 = cv2.resize(frame1,(400,500))
    if flag1 is None:
        print ("Major error!")
    elif flag1:
        global last_frame1
        last_frame1 = frame1.copy()
        pic = cv2.cvtColor(last_frame1, cv2.COLOR_BGR2RGB)     
        img = Image.fromarray(pic)
        imgtk = ImageTk.PhotoImage(image=img)
        lmain.imgtk = imgtk
        lmain.configure(image=imgtk)
        lmain.after(10, show_vid)


def show_vid2():
    if not cap2.isOpened():                             
        print("cant open the camera2")
    flag2, frame2 = cap2.read()
    frame2 = cv2.resize(frame2,(400,500))
    if flag2 is None:
        print ("Major error2!")
    elif flag2:
        global last_frame2
        last_frame2 = frame2.copy()
        pic2 = cv2.cvtColor(last_frame2, cv2.COLOR_BGR2RGB)
        img2 = Image.fromarray(pic2)
        img2tk = ImageTk.PhotoImage(image=img2)
        lmain2.img2tk = img2tk
        lmain2.configure(image=img2tk)
        lmain2.after(10, show_vid2)

if __name__ == '__main__':
    root=tk.Tk()                                     
    lmain = tk.Label(master=root)
    lmain2 = tk.Label(master=root)

    lmain.pack(side = LEFT)
    lmain2.pack(side = RIGHT)
    root.title("Lane-line detection")            
    root.geometry("900x700+100+10") 
    exitbutton = Button(root, text='Quit',fg="red",command=   root.destroy).pack(side = BOTTOM,)
    show_vid()
    show_vid2()
    root.mainloop()                                  
    cap.release()

到此这篇关于Python道路车道线检测的实现的文章就介绍到这了,更多相关Python 道路车道线检测内容请搜索179885.Com以前的文章或继续浏览下面的相关文章希望大家以后多多支持179885.Com!

猜你在找的Python道路车道线检测的实现相关文章

在本文中,我们将构建一个机器学习项目来实时检测车道线。我们将使用 OpenCV 库使用计算机视觉的概念来做到这一点,感兴趣的可以了解一下
本文先抓取网络上的表情图像,然后利用百度 AI 识别表情包上的说明文字,并利用表情文字重命名文件,感兴趣的程序猿们可以参考一下
本文主要实现了利用百度 AI 开发平台的 OCR 文字识别 API 识别并提取图片中的文字。具有一定的参考价值,感兴趣的程序猿们可以参考一下
一个项目在升级迭代的时候,不会立马抛弃旧的版本,甚至会出现多个版本共存同时维护的情况,因此需要版本控制
Intersection over Union(IoU)是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxes)
DFA全称为Deterministic Finite Automaton,即确定有穷自动机。特征:有一个有限状态集合和一些从一个状态通向另一个状态的边,每条边标记有一个符号,其中一个状态是初
pycharm是一个很强大的编辑工具,很多朋友在使用过程中容易产生误操作,那么一不小心删除了,怎么恢复呢,今天就给大家介绍pycharm代码删除恢复教程,需要的朋友参考下吧
异常就是系统中的错误,程序是无法改变和处理的,文中有给大家提到异常处理机制,模块与包的相关知识,通过实例代码给大家介绍的非常详细,需要的朋友参考下吧
redis 提供两个类 Redis 和 StrictRedis, StrictRedis 用于实现大部分官方的命令,Redis 是 StrictRedis 的子类,用于向后兼用旧版本,接下来通过本文给大家分享Python
最近有童鞋向小编求助怎么样找到字符串中出现字数最多的字符呢,其实最简单的处理方法是使用max函数,max()函数用于获得给定的可迭代对象中的最大值,关于Python max函
今天给大家带来的是关于Python的相关知识,文章围绕着Python注释的用法展开,文中有非常详细的介绍及代码示例,需求的大佬可以参考下
今天来分享一篇办公干货文章,对于财务专业等学生或者公司财务人员来说,将报账发票等汇总到excel简直就是一个折磨.尤其是到年底的时候,公司的财务人员面对一大堆