浅谈Python中的正则表达式

Python里的正则表达式

Python里的正则表达式,无需下载外部模块,只需要引入自带模块:re

import re

官方re模块文档: https://docs.python.org/zh-cn/3.9/library/re.html

同时,Python的正则表达式是PCRE标准的,相较于广泛应用在Unix上的POSIX标准,还是有些区别的(主要是简化)

基本方法

观察re源码,其主要的接口方法有:

  • match(…):从字符串的起始位置匹配一个模式,如果无法匹配成功,则match()就返回none
  • fullmatch(…):是match函数的完全匹配(从字符串开头到结尾)版本
  • search(…):扫描整个字符串并(默认)返回第一个成功的匹配
  • sub(…):用于替换字符串中的匹配项
  • subn(…):和sub(…)类似,但返回值多一个替换次数
  • split(…):分割字符串,返回列表形式f
  • indall(…):在字符串中找到正则表达式所匹配的所有子串,并返回一个列表形式,如果没有找到匹配的,则返回空列表。finditer(…):和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并把它们作为一个迭代器返回
  • compile(…):用于编译正则表达式,生成一个正则表达式( Pattern )对象,供 match() 和 search() 这两个函数使用
  • purge(…):用于清除正则表达式缓存

其中,本文主要会介绍的方法为:match(...)search(...)findall(...)spilt(...)。不过,方法都类似,会这些方法,剩下的也大同小异。

元字符与预定义字符集

我认为,元字符算和预定义字符集是正则表达式的核心内容了。

预定义字符集:

预定义字符 说明
w 匹配下划线“”或任何字母(a-zA-Z)与数字(0-9)等价于a-zA-Z0-9
W 与w相反,匹配特殊字符等价于**^a-zA-Z0-9_**
s 匹配任意的空白字符,等价于**<空格>rnfv**
S 与s相反,匹配任意非空白字符的字符,等价于**^s**
d 匹配任意数字,等价于0-9
D 与d相反,匹配任意非数字的字符,等价于**^d**
b 匹配单词的边界
B 与b相反,匹配不出现在单词边界的元素
A 仅匹配字符串开头,等价于^
Z 仅匹配字符串结尾,等价于$

元字符:

元字符 说明
. 匹配任何一个字符(除换行符**n**除外)
^ 脱字符,匹配行的开始
$ 美元符,匹配行的结束
| 连接多个可选元素,匹配表达式中出现的任意子项
[] 字符组,匹配其中的出现的任意一个字符
- 连字符,表示范围,如“1-5”等价于“1、2、3、4、5”
? 匹配其前导元素0次或1次
* 匹配其前导元素0次或多次
+ 匹配其前导元素1次或多次
{n}/{m,n} 匹配其前导元素n次/匹配其前导元素m~n次
() 在模式中划分出子模式,并保存子模式的匹配结果

一般来说,使用+?*{n}{n,}{n,m}时,即激活正则表达式的贪婪模式。可以在其后加入?来取消贪婪模式。

贪婪模式

一般来见,重复多次匹配就是贪婪模式,也就是尽可能匹配多个字符。

比如:

import re

lineOne = "Who is the Mintimate"
# 贪婪模式
print(re.findall(r'w+',lineOne))
# 非贪婪模式
print(re.findall(r'w',lineOne))
print(re.findall(r'w+?',lineOne))

输出:

['Who', 'is', 'the', 'Mintimate']
['W', 'h', 'o', 'i', 's', 't', 'h', 'e', 'M', 'i', 'n', 't', 'i', 'm', 'a', 't', 'e']
['W', 'h', 'o', 'i', 's', 't', 'h', 'e', 'M', 'i', 'n', 't', 'i', 'm', 'a', 't', 'e']

可以看到,使用**?**来激活非贪婪模式,基本是让多次匹配无效化。

捕获与非捕获括号

之所以捕获与非捕获括号单独出来讲,其实是我当时学习正则时候,这边卡了很久。

  • 捕获括号:()
  • 非捕获括号:(?:)

捕获括号其实就是代码里的优先级一样,比如:

2*(2+3)=10

之所以,我们会先算2+3,是因为有**()的存在。正则里也是,如果存在()**,则会优先捕获()内的内容:

import re

lineOne = "Who is Mintimate?"
# 未使用捕获括号
print(re.findall(r'Mintimate',lineOne))
# 使用捕获括号
print(re.findall(r'M(intimate)',lineOne))
# 使用非捕获括号
print(re.findall(r'M(?:intimate)',lineOne))

输出结果:

['Mintimate']
['intimate']
['Mintimate']

而非捕获括号主要与|同时使用:

import re

lineOne = "This is the Mintimate,not the Minimen?"
print(re.findall(r'M(?:intimate|inimen)',lineOne))

输出结果:

['Mintimate', 'Minimen']

正则匹配(判断目标格式)

主要讲解Python下的几个方法使用方法。

match匹配

match(…)即:

re.match(pattern, string, flags=0)

参数的具体含义如下:

  • pattern:表示需要传入的正则表达式。
  • string:表示待匹配的目标文本。
  • flags:表示使用的匹配模式。如:是否区分大小写,多行匹配等等。可省略,默认为0

使用match进行正则匹配,可以方便我们对字符串内类型的判断,如:是否为纯数字或第一位数否为数字

import re

lineOne = "7704194"
lineTwo = "My UID in Tencent Community is:7704194"
print(re.match(r"d", lineOne))
print(re.match(r"d+", lineOne))
print("===")
print(re.match(r"d", lineTwo))
print(re.match(r"d+", lineTwo))

输出结果:

<re.Match object; span=(0, 1), match='7'>
<re.Match object; span=(0, 7), match='7704194'>
===
None
None

其中,d为匹配0-9的数字类型,而+是匹配出现1次或多次。

正则搜索(提取/分组字符)

正则搜索,常用的是search和findall方法了,方法体均一样:

re.search(pattern, string, flags=0)
re.findall(pattern, string, flags=0)

search和march类似,均是匹配字符串内容,不符合返回None。但是主要区别:

  • re.match() 从第一个字符开始找, 如果第一个字符就不匹配就返回None, 不继续匹配. 用于判断字符串开头或整个字符串是否匹配,速度快
  • re.search() 会整个字符串查找,直到找到一个匹配

代码中更形象:

import re

lineOne = "7704194"
lineTwo = "My UID in Tencent Community is:7704194"
# 使用match搜索纯数字字符串
print(re.match(r"d", lineOne))
# 使用search搜索纯数字字符串
print(re.search(r"d", lineOne))
# 使用match搜索复合字符串
print(re.match(r"d", lineTwo))
# 使用search搜索复合字符串
print(re.search(r"d", lineTwo))

其输出结果:

<re.Match object; span=(0, 1), match='7'>
<re.Match object; span=(0, 1), match='7'>
None
<re.Match object; span=(31, 32), match='7'>

而findall,在上match和search的前提下,进一步封装。相对于强化版的match和search

import re

lineOne = "7704194"
lineTwo = "My UID in Tencent Community is:7704194"
print(re.findall(r'd',lineOne))
print(re.findall(r"d",lineTwo))

输出结果:

['7', '7', '0', '4', '1', '9', '4']
['7', '7', '0', '4', '1', '9', '4']

而如果你想完成提取:

print(re.findall(r"d+",lineTwo))

输出:

['7704194']

方便在数据处理时,快速提取连续数字╮( ̄▽ ̄"")╭。

操作实例

单单看文档,总是不实际。这边我演示几个正则表达式的实例(我根据我自己使用环境所写,可能在其他特殊环境有问题

URL去参

在写爬虫时候,有时候得到的URL是带标签(#)或者Get请求(?id=*)的,但是有时候我们需要去除这些参数,得到纯净的URL地址,这个时候可以用正则表达式:

lineOne = "https://www.mintimate.cn#mintimate"
lineTwo = "https://www.mintimate.cn?user=mintimate"
print(re.findall(r'https?://(?:[w]|[/.])*',lineOne))
print(re.findall(r'https?://(?:[w]|[/.])*',lineTwo))

效果:

['https://www.mintimate.cn']
['https://www.mintimate.cn']

这里主要的细节:

  • https?:匹配http或https
  • (?😃:非捕获括号,用于和后续|进行配合

IPv4匹配

用正则匹配IPv4就比较复杂了,我是这样写的:

import re

lineOne = "192.168.1.1"
lineTwo="这不是IPv4嗷"
isIPv4=re.compile(r'((2(5[0-5]|[0-4]d))|[0-1]?d{1,2})(.((2(5[0-5]|[0-4]d))|[0-1]?d{1,2})){3}')
print(isIPv4.search(lineOne))
print(isIPv4.search(lineTwo))

输出结果为:

<re.Match object; span=(0, 11), match='192.168.1.1'>
None

解释一下:

  • 末尾的{3},代表前面(.((2(5[0-5]|[0-4]d))|[0-1]?d{1,2}))重复三次匹配,
  • 而前面的((2(5[0-5]|[0-4]d))|[0-1]?d{1,2})我们可以拆分为两部分,(2(5[0-5]|[0-4]d))和0-1?d{1,2}:前者是匹配首位为2开头、第二位为1到5或1到4、最后一位为0到9;后者是匹配第一位为0或1,且?代表可以不存在这一项,后两位为两位0-9的数字。

效率问题

使用正则表达式,很大程度是为了精简代码,但是存在一下问题:

  • 代码可读性降低:普通的匹配数字还好,但是如果都像IPv4这样的,一定程度可读性就降低了,维护成本高(虽然后期一般不回去改)
  • 解析时间长:这个还是要看具体代码,但是总的来说:贪婪模式相比懒惰模式以及独占模式有一个回溯过程,消耗资源会更多。

解决方案:

  • 一条正则表达式规则如果运用上百次,可以使用compile()方法进行预先加载。
  • 减少使用贪婪模式。

总结

正则表达式是一个很重要的工具,尤其是在Python数据处理时,能高效处理问题事件。看完这篇文章后,应该对正则表达式不在陌生,感兴趣可以自己写个正则规则,如:强密码判断、IPv6的判断等

另外,因为篇幅所限,更多Python内的细则,可以参考官方文档:

https://docs.python.org/zh-cn/3.9/library/re.html

到此这篇关于浅谈Python中的正则表达式的文章就介绍到这了,更多相关Python正则表达式内容请搜索179885.Com以前的文章或继续浏览下面的相关文章希望大家以后多多支持179885.Com!

猜你在找的浅谈Python中的正则表达式相关文章

今天教大家利用简单的机器学习算法实现垃圾邮件识别,文中有非常详细的介绍及代码示例,需求的大佬可以参考下
前段时间在制作词云制作小工具的时候,直接在命令行用pyinstaller -F 工具.py指令打包成功后,启动exe可执行文件的时候各种报错, 今天,我们就分享一下踩坑经过,需
本文主要介绍了PyTorch的MNIST数据集,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
matploglib能够绘制出精美的图表,有时候我们希望把一组图放在一起进行比较,就需要用到matplotlib中提供的subplot了,给大家介绍了关于python中subplot大小的设置
介绍了python中的tkinter库弹窗messagebox,包括消息提示框、消息警告框、错误消息框,通过代码给大家介绍的非常详细,需求的大佬可以参考下
这种把某个文件转为pdf枯燥无聊的工作,既没有什么技术含量又累. 今天辰哥就教大家将任意文件批量转为PDF,这里以日常办公的word、excel、ppt为例,这三种格式的文
今天教大家如何用Python爬虫去搭建一个「生活常识解答」机器人.思路:这个机器人主要是依托于“阿里达摩院发布的语言模型PLUG”,通过爬虫的方式,发送post请求(提问),
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数
今天给大家带来的是关于Python基础的相关知识,文章围绕着Python变量的相关知识展开,文中有非常详细的介绍及代码示例,需求的大佬可以参考下
数据可视化是任何探索性数据分析或报告的关键步骤,目前有许多非常好的商业智能工具,比如Tableau、googledatastudio和PowerBI等,本文就详细的进行对比,感兴趣的可以了
今天给大家带来的是关于Python的相关知识,文章围绕着Python魔法方法展开,文中有非常详细的介绍及代码示例,需求的大佬可以参考下
conftest.py文件到底该如何使用呢,下面我们就来详细了解一下conftest.py文件的特点和使用方法吧,感兴趣的程序猿们可以参考一下